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Our research activity during the period covered by this report
was focused on the design of signal constellations to be used in
trellis codes.

The 1increased importance of combined codes and modulations have
resorted a wide interest in group codes for Gaussian channel,
first introduced by Slepian, and in the more recent concept of
generalized group alphabet.

Our main aim was to collect and organize the principal results in
this area in order to present a state of the art in group coding
theory. As a consequence some new point configurations were found
and their properties exploited.

The paper herewith enclosed, includes a review of group codes
theory as well as new point configurations which appear promising
for the applications.

The paper was presented at the International Symposium on
Information and Coding Theory held in Campinas - SP - Brazil,
from July 27 to August 3, 1987.
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GROUP CODES AND SIGNAL DESIGN
FOR DIGITAL TRANSMISSION

by
Michele Elia

Dipartimento di Elettronica - POLITECNICO DI TORINO - ITALY

I - INTRODUCTION

Symmetry seems to be a feature intrinsic to every life process. It
should be a very stimulating undertaking to discuss the fundamental
role played by symmetry in art, music, chemistry, biology, physics,
computer science and more generally in every mathematical science. A
fascinating sample of this subject was provided by H. Weyl [53] in his
last book dedicated to a synthetic view of symmetry. Nevertheless in
this paper we limit our considerations to the key role of symmetry in
communication theory. In this field symmetry plays an indispensable
part in reducing the complexity of every data transmission scheme.

The algebraic notion of group underlies both the geometrical descrip-
tion of digital signals proposed by Shannon, [43], and the geometrical
methods of error control codes developed shortly after Shannon's work.
However the introduction and systematic use of methodology, machinery
and language of group theory in both coding theory and signal design
must be ascribed to Slepian [2,3].

In some way Slepian's approach parallels Klein's Erlagen program on the
foundation of geometry: all geometric objects and concepts can be

formulated starting from the abstract notion of group which provides

This work has been sponsored in part by the United States Army through
its European Research Office grant N. DAJA45-86-C-0044, and in part by
Consiglio Nazionale delle Ricerche through grant N. 86.02428.07.
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& the appropriate tool for every useful and applied mathematical theory.
In Klein's words "a geometry is defined by a group of transformations,
A and investigates everything that is invariant under the transtormations

; of  the given group". In our context the main object lett invariant by

py the group is a code, as will be defined later.

N The Shannon theory of any communication process shows that the intorma
tion is inherently discrete and also that the quantity ot intormation
that can be processed by every practical system is finite.

‘ Signals for sending information over physical channels are essentiallw

v time- and f{requency-limited; as a consequence the dimension of the

:: signal space is finite. The signal energy, defined as the integral of

' the signal square over its finite time interval, induces an euclidean

I~ metric in this signal space. Therefore, by using an orthonormal basis,

;: we assocliate to each signal a point (or vector) in an euclidean finite

A dimensional space. In this way a finite set of signals corresponds to a
finite constellation of points that we call a code.

N Farly in the fifties Slepian introduced the concept of group code in

N the design of signal sets for the Gaussian channel. A group code is a

;: set of M unit vectors spanning an n-dimensional real space, on which

3‘ the matrices of a finite group representation operate transitively.

A straightforward generalization of Slepian's group codes is obtained

; bv considering a set of initial vectors instead of just one vector. The

i resulting set of vectors is called generalized group alphabet.

| The present awakening of interest in group codes is due to their in-
creasing use in transmission schemes of combined modulation with either
convolutional or block codes, an approach initiated by Ungerboeck.

O

) A fundamental problem for Slepian's group codes is the choice of the

p initial vector that maximizes the minimum distance. A second basic

-’ problem concerns the existence of group codes for every pair of inte-

g gers with M greater than n. The classification of all configurations of

: given dimension is constructively important. As far as we know, only

: the classification in dimension three is complete. The same problems,

: formulated for generalized group alphabets, seem even more difficult.
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However the field is wide and deserves investigations either from a
purely theoretical point of view or for practical applications.

We are aware of the fact that the theory of group codes is still
incomplete, but the open problems really challenge the human thinking

and stimulate the research work of engineers and mathematicians alike.

[T - SIGNAI, SETS: THE GEOMETRICAL MODEL

Signals for sending information are essentially limited both in time
and frequency. According to a point of view accepted in the past, the
simultaneous concentration attainable in both domains is limited by an
uncertainty principle, so named after the analogous relations in
quantum mechanics. Moreover energy constraints are imposed for practi-
cal purposes.

Finite bandwidth W and finite time duration T together imply that the
dimension of the Hilbert space of the signals is essentially finite.

I1f we require strictly finite duration and simultaneously maximum
concentration of signal energy in a given bandwidth, we have a problem
whose natural mathematical setting is the calculus of variations. This
problem has been thorougly discussed, [30,5,40,41), even if its conse-
quences have not received much attention from the signal designers yet.
Let V be a Hilbert space with support the interval [0,T], and let the

scalar product be defined as

T
(0,0) = [ o(t) $(t) dt o(t), w(t)ev
0
where overbar denotes complex conjugation.
The norm square ([.|{?, defined as [fof|‘= (¢,0) represents the energy of
the signal o(t)eV. In the set of linear operators acting in V and

having a discrete spectrum, the operators associjiated to linear filters
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are of particular interest. Let H(f) denote the (filter transfer
function. Therefore the Fourier transforms ¢(f) and Y(f), respectively

of filter input and output signal, are related by

Y(f) = H(f) &(f)

The problem now is to seek the input function ¢(t), of unit energy, for
which the energy of the corresponding output functions ¢{(t), in the
bandwidth [-W,W], is as large as possible. That is, we want to maximize

the following integral

w o W - .
I, = [ w(F) ¥(£) df = [ K(E) H(F) o(f) o(f) af
under the constraint -W
I, =f o(f) o(f) af = 1

Bv means of Lagrange's multipliers the solution is found to be the
eigenfunction associated to the largest eigenvalue of the integral

equat.ion

.
(1) j K(t-s) o(s) ds = A o(t) te[0,T)
(4]

where the positive definite kernel is defined by the Fourier transform
W
K(t-s) = f H(f)H(f) exp{2nj(t-s)f] df.
~\W

[he positive eigenvalues A, ordered in decreasing order, exhibit the
typical trend shown in Fig.l, which demonstrates that the dimension of
the signal space of functions limited both in time and frequency is
essentially finite and can be taken to be approximately 2WT, {5]. (If
2TW>10, this statement is true within an energy dispersion of some few

per cent and irrespective of H(f) ).
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Fig.l - Typical behavior of the eigenvalues of equation (1)

A natural orthogonal basis B = {y;(t)}}_;, n<2WT, for the space of the
signals limited both in time and frequency is provided by the set of
normalized eigenfunctions associated to the set of eigenvalues of
greatest value. By means of the basis B, we can uniquely associate to a

given set A of M signals

n
m; (t) =j-.21 Xij ll/j(t) i=1, ... ,M

a set € of M vectors
Xi=(xil’ e s Xyp) i=1, ... ,M

that we call code. The square of the Euclidean length of a vector X is
equal to the energy of the signal m(t).
We can now describe the operation of a quite general model of transmis-
sion scheme at the level of signal manipulation.
A transmitter associates to every source symbol, in a one-to-one way, a
signal chosen in the set A and sends this signal through the channel.
The <channel operates by adding to the transmitted waveform m(t) a
sample of a zero-mean random process v(t) with known spectral density.
The received signal is thus

r(t) = mg(t) + v(t) te{0,T]
where £ is a random variable taking values in the set {1,...,M}.
If we confine ourselves to coherent detection, from the observation of
r(t) over the interval [0,T], the receiver makes an estimate of the

value taken by £, that is, an estimation of the symbol emitted by the
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source. Let us suppose that all the information relevant to cvery
detection criterion lies in the signal space, therefore any decision
can be taken by referring to the vector
r=(ry, ..., ry)
where
T _—
['i=f r(t) ll‘l(L) dt
0
This is equivalent to considering a discrete-time continuous-amplitude
additive channel that produces
r=2X +N
where: N is a random vector with known probability density f(.);

Xr is a transmitted code vector from the code C.

At the receiver end, the decision taker may be described by an exhau-
stive partition of the n-dimensional space into M' disjoint regions Rj,
i=1,...,M', 1if the received vector r falls in region Rj then the de-
tected symbol will correspond to the integer j. We say that the demodu-

lator takes a '"hard" decision or a '

'soft" decision depending on whether
M'=M or M'>M respectively. In conclusion the channel is modelled by a

discrete memoryless channel with M input symbols and M' output symbols.

IIT - MEASURES OF PERFORMANCE

The performance evaluations of group codes on communication channels
rule the development of the entire theory of group codes. Hereafter we
briefly review some important performance indices wused in digital
communication systems. In order to avoid discussions depending on
transmission protocols, here and in the following we will deal only
with transmission schemes based on hard decisions. In this context the
most typical index is error probability, i.e. the probability that the

receiver takes a wrong decision about the symbol emitted by the infor-
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mation source. Assuming in particular equienergetic codes, white Gaus-

sian noise channel and maximum likelihood decision criterion at the
receiver's end, then the regions Ri’ i=1,...,M, will be connected
hypercones bounded by hyperplanes with the vertices in the origin.
Therefore the error probability is given by a sum of n-dimensional
integrals; letting R; denote the complementary region of R; in R" and

let. p{X;} be the probability of sending message i, we have

M
ple) = % [ £IX-X;) dX piX;)

A second important index is the configuration matrix C=(Cij) defined as
the Gram matrix of the set of vectors, i.e.

cij =XT Xy
This matrix C occupies a central position in the theory of group codes.
It conveys all the information relevant to evaluate code performances
on the white Gaussian channel and is also useful to compute other
performance indices.
A third relevant index is the minimum distance defined as the minimum

distance between any pair of distinct vectors of the code, that is

dZin = min || X; - XJ-"2
i#]

The evaluation of each performance index is usually very hard., so that

frequently the knowledge of upper and/or lower bounds is of sufficient

interest. As an example we derive an upper bound for the error probabi-

lity, that applies to symmetric point configurations.

Let us assume that the code has a symmetry such that the error probabi-

lities conditioned on a given code vector do not depend on this vector,

i.e. pfe} = p{e|Xi} i=1,...,M
Let the region R;, i=l,...,M, be bounded by the set of s hyperplanes of
equations Ix-x;5007 = "X—Xj"2

7
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where j  belongs to a convenient subset of {1,...,M}; the explicit
equation of each hyperplane turns out to be XT(Xi—Xj) = 0.
Applying the union bound, we get a general upper bound for the ecrror

probability

S
ple) = plefx;} = J F(X-X[) dX < 9 j F(X-X) dX
R j=1 N
<

s f £(X-X,) dX
£9]

©

where Qj is the halfspace defined by the inequality XT(Xi—Xj) < 0.

A
<

Q, is the halfspace defined by the inequality XT(XI—XO)

and X, is a code vector at the minimum distance from X,.

More detailed comments on performance indices will be provided after

the description of the main features of group codes.

IV - GROUP CODES

Symmetry seems to be an unavoidable occurrence for reducing the comple-
xity of every high-dimensional set of signals as required by Shannon's
channel theorem to guarantee high coding performance. For instance, we
can take advantage of symmetry in designing good decoding algorithms
for error control codes. Symmetry makes feasible the new digital modu-
lation schemes which combine error control codes and modulations.

As we observed in the introduction, symmetry cannot be separated from
the notion of group which discloses symmetry's real nature and con-
stitutes 1its formal counterpart. It was early in the fifties that
Slepian introduced the group codes for Gaussian channels; his ideas

found a definitive formulation in a stimulating paper [3], in 1965.
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Now let us formall: detine the main object of this paper.

Definition 1.

Consider a finite set S(G) = {D(yg): geG) of real orthogonal matri
ces  that form a faithful representation of a finite group G and consi-
der an n-dimensional unit vector N,. The set S(G)X, = {X};:D(g)flﬁ; :opuGh
of M vectors generated by the action of S(G) on X, is called group code
and denoted by [M,n], if it spans the n-dimensional space; otherwise it

is called planar group code.

In the present theory, group representations by matrices having real
entries are a fundamental mathematical tool.

The theory of group representations originated in the middle of the
nineteenth century from the works of many mathematicians. Equipped with
the theory of group characters, (the character of geG is the trace of
the matrix D(g)), the theory of matrix groups assumed a central role in
the development of modern algebra. We do not tryv to survey this sub-
ject. To coding theorists we recommend the book by Blake and Mullin
(12}, while for a thorough development of the topic we refer to the
books bv Curtis and Reiner [24}, Burrow {17] and van der Waerden [48].
Old fashioned but very rich and suggestive is the book bv Burnside,
[1e].

For easy reference and later use we recall some results concerning

group representations.

1 - A group representation is either irreducible or completelyv
reducible, i.e. it can be written as direct sum of irreduci-

ble components.

2 - A representation with real entries may be either real redu-
cible, or real irreducible. In this second case it may still
be complex reducible or not.

3 - The number of distinct irreducible components is equal to

the number of group classes.
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4 - Given two representations of groups G and G, we obtain a
representation of  their direct product by means of the
direct matvix sum

b(g g')= D(g) @ D(g') geG and g'eG,

The concept  of direct matrix sum is very important in describing the

structure of group codes. The general observation fits a paradigmatic

principle: in many instances to split a problem means to solve it.

Let |G| denote the cardinality of the group G. The cardinality M of the

code may be less than or equal to [G|. In case it is less there exists

a subgroup H of G such that the initial vector is left invariant, i.e.
HX, =X,

where with HX, we denote the set {X: X=D(h)X, , heH}.

The proof of the following theorem is straightforward and follows from

definition 1 and elementary properties of the groups.

Theorem 1.
1) JGI2M and |G| | M!
ii) if |G| > M then M | |G|

where dlb means that d is a divisor of b.

The following theorem concerning the subgroup H, has an important
consequence on the existence conditions for group codes. It is also
useful to clarify the relations between the group and the code.

Theorem 2.

The subgroup H cannot be normal.

See [7, 12, 35]) for a proof.

Theorem 3.

If G is abelian then |G| = M.

10




Besides  the abstract properties of the group G, also conditions con-

cerning  the skeleton of its representations are important for distin-
guishing between planar and non planar codes.

in order that an initial vector exists such that the generated set  of
vectors spans the n-dimensional space, the representations of the group
G omust satisfy the condition expressed in the following theorem.
Theorem 4.

Given an n-dimensional representation D(g) of a group G, a vector
X,eE?  exists such that the set {D(g)Xl, ch} of vectors spans EU if
and only if every irreducible representation contained in D(g) appears
with a multiplicity less than or equal to its dimension.

Yor a proof see Blake and Mullin [12].

Definition 2.

A representation is said full homogeneous if every irreducible compo-

nent has a multiplicity equal to its dimension.

The svmmetry of a group code is exploited by the configuration matrix.
According to the previous definition, it is an M by M matrix of rank n
ERTIP b SR IS L PO
It is also of interest to define an extended configuration matrix C©

the entries of which are the scalar products

whenever lG')M. Let Xg=D(g)X1 be the vector produced by the action of
the element geG. We define the extended configuration matrix as the |G|
bv |G| Gram matrix whose entries are

Cogt = Xg Xgt g,g'e G
Since H#{e}, the vectors of the set S(G)X, are not all distinct; in
fact the same vector appears with multiplicity [H].

The following theorem illustrates the shape and structure of configura-

tion matrices which rely in depth on the associated group.

11
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Theorem 5.

The rows of any configuration matrix of a group code are permuta-
tions of the first one.
This applies to both extended and not extended configuration matrices.

For a proof see [3] and [10].

[t is not hard to verify that the extended C® configuration matrix is
the Kronecker product of C by a matrix J, (possibly with a re-ordering
of rows and columns):
Ce=C o J

where J is a convenient matrix of which all entries are ls.

The importance of the configuration matrix C of a group codes, was
enhanced by Slepian's proof, [3], that it is possible to recover the
vectors of the code from C. Let PH(g), geG, denote the permutation
matrices of the right permutation representation of G induced by its
subgroup H; let AG(H) be the group algebra of G generated by these
permutation matrices, and let AZ(H) be the centralizing algebra of

AG(H). We have the following theorems.

Theorem 6.
The extended configuration matrix of a group code can be written as
the sum
Ce= %(ﬂg) L(g)
where L(g), geG, are the permutation matrices of the left regular

permutation representation of G.

Theorem 7.(Slepian)

The extended configuration matrix commutes with all the permutation
matrices of the right regular permutation representation of G, i.e. C®
belongs to the centraling algebra of the group algebra of the right

regular permutation matrices.

The configuration matrices of different group codes generated by diffe-

12
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rent irreducible representations of the same group G may originate an

.i orthogonal basis in the regular group algebra AG({e}), as stated in the
4,
;; following theorem due to Blake.
4o
’ Theorem 8.
:- Let D(g) and D'(g) be real irreducible representations of the finite
!
: group G of dimensions n; and ”j’ respectively, and Ci and Cj the
* configuration matrices of the group codes {D(g)X;, geG} and {D'(g)Xj,
\/
;| geG}, respectively. Then
[\
K i) if D(g) and D'(g) are not equivalent, then ¢4 Cj = 0 for any
KN .
:2. Xl and X_]’

11) if D(g) = D'(g) and Xl = XJ, then (C1)2=(G/n1) “X.l”2 Cl'
z: For a proof see Blake and Mullin [12].
L)
iy
I
:‘ Furthermore special structures of the configuration matrix may uniquely
¢
¢ characterize the group code.
Py
;- Theorem 9.(Blake)
N Let wus consider the configuration matrix C of an [M,n] code in which
)
. all entries of the first row are distinct.
': Then C is the configuration matrix of a group code if and only if:
o i) its rows are permutations of the first one;
{: ii) M is a power of 2, i.e. M=2%;
L .

iii) in the decomposition
1.. C=12I Cci Pl
ﬁ: the matrices P; are permutation matrices of order two and
)
w commute with each other.
)
i Moreover n2s and the group generating the code is commutative of type
v
) (1,1,...,1).
t
:
;A Now we can devise a general theorem concerning the conditions for a
0
‘ given Gram matrix to be the configuration matrix of a group code.
w However the formulation of such general conditions may be quite unsati-
'
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K sfactory, because they lack either classical mathematical fascination
R- or practical utility. It is a challenging question to find more pleas-
? ant and possibly useful conditions.
E
w Theorem 10.
r A Gram matrix C is the configuration matrix of a group code if and only
o if
b
i) rows of C are permutations of the first one;

:} ii) a matrix J, all entries of which are ls and the order of
:& which is not greater than (M-1)!, exists such that the
i' matrix C'=C ® J commutes with all matrices of a right
i regular representation of a group G.

See [10] for a proof.
b

We stop here the presentation of Slepian'‘s group codes. In the next

ool ol

- section we shall consider an extension that will include multilevel
:} codes which share, of course, the same underlying property of symmetry.
b
i
N V - GENERALIZED GROUP ALPHABETS

' The class of multidimensional alphabets is introduced. Special instan-
.x ces of these codes have been widely used for designing multidimensional
- signals in combined modulation and coding. Their structure is very rich
:5 in symmetries and, as far as we know, most of the signal constellations
:\ in actual use, either equienergetic or not, belong to this family.
o)
b Definition 3.
3; Consider a set of K n-vectors X = {Xl,...,XK}, called the initial
‘g{ set, and L orthogonal n x n matrices Sl""’ Sy, that form a represen-
» tation S(G) of the group G. The set of vectors S(G)X;, ... , S(G)Xg

obtained from the action of S(G) on the vectors of the initial set is

- .
-
i

called a Generalized Group Alphabet, and from now on shortened to GGA.
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Definition 4.

A GGA is called separable it the vectors of the initial set are tran-
sformed by S(G) into cither disjoint or coincident vector sets, i.e.,
o P E ok
S(G)X; n S(G)x =
6N, ik

Since an orthogenal matrix transforms a vector into one with the  same
length, the signals associated with a GGA have as manyv cnergy levels as

there are in the initial set.

Definition 5.

A GGA is called regular if the number of vectors in each subalphabet
S(G)Xj, j=1,...,K, does not depend on j, i.e., each vector of  the
initial set is transformed by S(G) into the same number of  distinct
vectors. A regular GGA is called strongly regular it cach set S((}).\'J
contains exactly L distinct vectors,.

The following result stems directly from the definitions.

Theorem 11.
The number M of vectors in a regular GGA is a multiple of K. 1{ GGA is

strongly regular, then M=KL.

We consider now some distance properties of the elements of a GGA.
Choose a partition of a GGA into m subsets Z1s 224.-., 7y For cach

subset Z;, we can define the intradistance set as the set of all the

ruclidean distances among pairs of vectors in Z;. For any pair of

distinct subsets Z;, Z:, we define their interdistance set as the set

L3
of all the Euclidean distances between a vector in Z; and a vector in

Z5-
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Definition 6.

The partition of a separable GGA into m subsets Z],...,Zm is called
fair if all the subsets are distinct, include the same number of vec-

tors and their intradistance sets arc equal.

We shall now present a constructive method to generate tair partitions
of a GGA. Consider the generating group 5(G) of the GGA, one of  its
subgroups, say S(H), and the partition of S(G) into left cosets  of

S(H). We have the following result.

Theorem 12.

If the left cosets of the subgroup S(H) are applied to the initial set
of a strongly regular GGA, this procedure results in a fair partition
of the GGA. Under the same hypotheses, if S(H) is a normal subgroup,
then left and right cosets give rise to the same fair partition.

For a proof see [11].

The condition of strong regularity of the GGA can be removed: but in
this case it may happen that different cosets generate the same element
of the partition. Hence, some of the cosets must be removed from consi-
deration. Moreover, notice that if S(H) is a normal subgroup of S(G),
then we do not need to distinguish between left or right cosct parti-
tions. On the contrary, if S(H) is not normal, the partitions obtained
from right cosets may not be fair, as it can be shown by a counterexam-
ple. In some cases, we are interested in further partitioning every
element Z; in the same number of subsets. This leads to the concept of
a chain partition, that is the GGA is partitioned in subsets which in
turn are partitioned in the same number of sub-subsets, and so on. We
call 1level of a subset in the chain partition the number of inclusions

beetwen the given subset and the whole group code.
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Definition 7.

The chain  partition of a separable GGA is called fair if any two
elements  of the partition at the same level of the chain  include the

same number of vectors and have equal intradistance sets.
For fair chain partitions we have the tollowing theorem.

Theorem 13,
Consider a strongly vregular GGA, and a chain of subgroups of its
generating group S(G), that is
S(Hp) © S(Hp) < S(Hg) ¢ ... S(Hg) = S(G)
Use H;_; and its left cosets to generate a partition of GGA. Then, use

H and its left cosets in H, to further partition all the sets of the

s-1
previous partition. Repeat the procedure with H,_ 5, and so on, until
Hy and its left cosets in Hyp are used. The resulting chain partition of

GGA is fair.

A theorem concerning the interdistance sets sheds some further light on

the symmetry properties of GGA's.

Theorem 14.

Let H be a normal subgroup of G. The partition of a strongly regular
GGA obtained by applying the left cosets of H to the initial set X has
the following property: the interdistance set associated with any two
cosets, say SyH and SpH, is a function only of the coset S3H, where

53 = STSZ’ and not of S1, Sp separately.

For a proof see [11].

We conclude this section by showing how GGAs, in particular group
codes, can be used in conjunction with error control codes to exploit
the channel capacity further. We shall illustrate first the joint use
of multidimensional alphabets and block codes, thus we will describe

how the signal alphabets are paired to convolutional (trellis) codes.
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Imai and Hirakawa [33] and recently Ginzburg [31] have described con-
structions which make it possible to design set of signals with a
regular structure and with an arbitrary minimum distance as insured by
the algebraic properties of block codes. Ginzburg's construction consi-
ders L block encoders Cy,Cy,...,(; which accept source symbols, and
output L blocks (qli,qu,...,qu), i=l,...,L., of N symbols each. The

modulator t maps each L-tuple (qjl""'qu)' j=1,...,N, into the vector
}\] :t(qjl""’qu)’ Jj= l, cee N

chosen from a GGA of M=M;...M; elements. This mapping is obtained as
follows. In GGA we define a system of L partitions such that each
class of the &-th partition includes My, classes of the (2-1)-th
partition. Each class will consist of M(2)=M|M;...My signals. By
numbering the classes of the (2-1)-th level occurring in a class of the
¢-th level we can obtain a one-to-one mapping of the set of classes of
the (v-1)-th partition onto the set of integers {0,...,Mg—1}. There-
tore, if qij are chosen in the set {0,...,MQ-1}, ¢=1,...,L, any L-tuple
(qjl,...,qu) defines a wunique value of the j-th elementary signal
Xj:f(qjl,...,qu).

We shall now see how an Ungerboeck code can be designed using GGA. The
procedure suggested in [47] and called "mapping by set partitioning",
can  be achieved by the notion of fair partition, which represents a
svstematic general’zation of that concept.

Fach coded symbol depends on k+v source bits, namely the block
1=(a;,...,a;) of k bits generated by the source, plus v bits preceding
this block. The v bits determine one of the N=2V states of the encoder,
say 0 = (ap4ys -+ 5 8g4y)» ap=0,1. The encoder state for the next

coded symbol is obtained by shifting the a_ 's k places to the right,

n
dropping the right-most k bits and inserting on the left the most
recent k source bits. The encoded symbol Xj, which is an element of a

GGA, depends on 1 and o and, in this framework, the encoding procedure
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;f can  be  described using a trellis and by assigning to the branches
f: outgoing from each node the set of symbols obtained from a fair parti-
& tion of a GGA.

R i VI - THE INITIAL VECTOR PROBLEM

O

#fi The minimum distance is a relevant factor to define the code performan-
‘Ji ce on noisy channels because it is a fact that distant signals are hard
:: to confuse as an effect of the noise. Moreover monotone decreasing
i functions of the minimum distance constitute an upper bound to the
\6 error probability. It follows that codes with large minimum distances
i:j are desirable, and in particular the choice of Slepian's group codes
‘_:f with the greatest minimum distance leads to the initial vector problem
e which is also interesting from a geometrical point of view.

04%

e The initial vector problem for group codes can be stated as follows:

:i$ given a finite group S(G) of orthogonal matrices that generates a group
5 code [M,n] by operating on an initial unit vector X, among all such

; vectors X find out the vector X, for which the minimum distance is the
oA greatest possible. We have to find the maximum of the minimum of the
': distances, i.e. to determine a kind of saddle point with respect to the
'; continuous variable X and discrete variable g:

e max [ min d(D(g')X,D(g)X)]

2 e

;:3 where the maximum is taken over all the vectors of R"™ with the con-
2> straints |[X]|=1 and S(H)X=X. S(H) is a subgroup of S(G), possibly H={e}.
:ﬁ At the present time no general solution is known. The problem has been
:S solved for many classes of group codes and for codes generated by
E; special representations. Djokovic and Blake, [25], settled the case of

full homogeneous component; Downey and Karlof found all the optimal

group codes in three dimensions [28]; Biglieri and Elia identified the
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optimal initial wvector for Variant 1 permutation codes, 19), and

showed that for cyclic codes [8]) as well as for abelian codes the iy
optimal inittial vector is obtained by solving a linear programming

problem. Nevertheless, the evidence so far is that the problem cannot

have, in general, a closed form solution.

We do not  digress on the meaning of "solution", but  we adopt the

pragmat ic  view that for practical purposes any kind of numerical solu-

J tions should be regarded as a valid one. ¢
;f‘ For computational approaches the initial vector problem can be stated, "

) in general, as a mathematical problem with a quadratic objective sub- ‘
}; jected to quadratic constraints, [37].
" Let df be the minimum square distance. The optimal initial vector X, is

) the solution to:

W ) )

d7 = Max Min d2(D(g)X,,X,)

K where  the maximum is taken over all unit vectors and the minimum is on
‘ all elements ¢eG different from the identity.

X For anv unit veetor X and unitary matrix D(g), we have

.:: d7(D(g)X,X)=2-2(D(g)X,X).

;: Thus maximizing the minimum distance is equivalent to minimizing the
'"‘ maximum inner product. We may assume the maximum inner product positive ‘
‘, and equal to rv. lLet Y=(1/r)X,. Then, for all non identity elements of

f G, (D(g)Y,Y)<t and (Y,Y)=1/r”. Hence Y is a solution to:

% Find Max (Y,Y) )

’ subject to (Dig)Y,Y)<] whenever g is not the identity in G. :
Y
b The problem of the initial set of vectors for GGA is more complicated, z
:\ of course, than for group codes because more than one vector is to be
:_ found and different objectives may motivate the choice. In this case
‘i one formulation of the initial set vector problem is the following: y
K’ Given S(G) find a set {Xl,...,XK} of K n-dimensional

.4 vectors with average square norm equal to E, such that
i the generated GGA is regular and such that the minimum ‘

., distance is as large as possible. §
;\
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Here we do not treat the subject further, as the dJdiscussion would be
verv long. For example GGA used in conjuction with error control codes
hopefully must have the maximum possible minimum intradistance associa-
ted to a given fair partition.

In this context the open problems are countless; the few known solu-
tions either are heuristic or obtained by hand manipulations. Much work

must still be done.

VII - THE CONSTRUCTIVE VIEW

One important intent of the group code theory is to produce good point
constellations for the design of digital signals to be used in data
transmission, vector quantization, pattern recognition or in many other
fields. A second and ambitious objective of this theory is the systema-
tic classification and construction of all regular point coprstellations
in n-dimensional spaces